Difference Discrete Variational Principle in Discrete Mechanics and Symplectic Algorithm
نویسندگان
چکیده
منابع مشابه
Difference Discrete Variational Principle in Discrete Mechanics and Symplectic Algorithm
We propose the difference discrete variational principle in discrete mechanics and symplectic algorithm with variable step-length of time in finite duration based upon a noncommutative differential calculus established in this paper. This approach keeps both symplicticity and energy conservation discretely. We show that there exists the discrete version of the Euler-Lagrange cohomology in these...
متن کاملDifference Discrete Variational Principle , Euler - Lagrange Cohomology and Symplectic , Multisymplectic Structures
We study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncomutative differential geometry. By virtue of this variational principle, we get the difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical ...
متن کاملDiscrete variational Hamiltonian mechanics
The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between gen...
متن کاملDiscrete mechanics and variational integrators
This paper gives a review of integration algorithms for finite dimensional mechanical systems that are based on discrete variational principles. The variational technique gives a unified treatment of many symplectic schemes, including those of higher order, as well as a natural treatment of the discrete Noether theorem. The approach also allows us to include forces, dissipation and constraints ...
متن کاملVariational Discrete Dirac Mechanics—implicit Discrete Lagrangian and Hamiltonian Systems
We construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian and Hamiltonian systems, while incorporating discrete Dirac constraints. In particular, this yields implicit nonholonomic Lagrangia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Theoretical Physics
سال: 2004
ISSN: 0253-6102
DOI: 10.1088/0253-6102/42/3/443